

Search for Dark Photons and Higgs at BABAR

David N. Brown
University of Louisville
On behalf of the BABAR Collaboration

Search for Dark Photons and Higgs at BABAR

- Motivation
- The BABAR Experiment
- Search for Dark Photons, A' Preliminary to be submitted to PRL
- Search for Dark Higgs, h' PRL 108 (2012) 21180
- Measurement of anti-deuteron production

arXiv:1403.4409, accepted for PRD-RC

to PRL

Search for Dark Photons and Higgs at BABAR

Mot

The

Sea

Seal

Mea

Not presented today but worth note...

- $\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$ PRL103 (2009) 081803
- $\Upsilon(3S) \rightarrow \gamma A^0, A^0 \rightarrow t^+t^-$ PRL103 (2009) 181801
- PRL107 (2011) 221803
- $\Upsilon(2S,3S) \rightarrow V A^0, A^0 \rightarrow$ invisible arXiv: 0808.0017 + new analysis in progress

- $\Upsilon(1S) \rightarrow V A^0, A^0 \rightarrow invisible$ PRL107 (2011) 021804
- $\Upsilon(1S) \rightarrow V A^0, A^0 \rightarrow \mu^+\mu^-$ PRD 87 (2013) 031102
- $\Upsilon(2S,3S) \rightarrow \gamma A^0, A^0 \rightarrow hadrons \cdot \Upsilon(1S) \rightarrow \gamma A^0, A^0 \rightarrow t^+t^-$ PRD 88 (2013) 071102
 - $\Upsilon(1S) \rightarrow V A^0, A^0 \rightarrow gg \text{ or ss}$ PRD 88 (2013) 031701
 - $\Upsilon(1S) \rightarrow V A^0$, $A^0 \rightarrow gg$ and $A^0 \rightarrow c\bar{c}$ in preparation

arXiv:1403.4409, accepted for PRD-RC

<u>Motivation – Search for the</u> <u>Dark Sector</u>

 Existence of dark matter is well-established from astrophysical evidence, but its nature is not known Zwicky, AcHPhys 6 (1933); et al.

- Collider experiments allow for:
 - Direct searches for dark particles through decays to Standard Model (SM) particles
 - Study of backgrounds to potential astroparticle searches
- Electron collider experiments are particularly clean environments and in many cases provide the best reach in searches for new physics

Embrace the Dark Side

© Lego, Lucasfilm

The **BABAR** Experiment

- Primarily designed for study of *CP*-violation in *B* meson decays
- Quality and general-purpose design make it suitable for a large variety of studies

BABAR data sample contains

~470 x
$$10^6 \Upsilon(4S)$$

~120 x
$$10^6 \Upsilon(3S)$$
 (10x Belle)

~100 x
$$10^6 \text{ Y(2S)}$$
 (10x CLEÓ)

~ 23 x 10⁶
$$\Upsilon(2S,3S) \rightarrow \Upsilon(1S) \pi^{+}\pi^{-}$$

Dark Sector Overview

 Recent dark matter models introduce a new dark sector with a new U(1).

PLB 166, 196 (1986)

 The corresponding gauge boson, the so-called dark photon (A'), is light (MeV – GeV mass) in these models.

PLB 662, 53 (2008); PRD 79, 015014 (2009; arXiv:1311.0029, for example

- Dark sector particles do not couple directly to the SM content. Interaction dark sector - SM via kinetic mixing between the dark photon and photon/Z with a mixing strength ε among other "portals".
- In other words, there is a dark photon SM fermion coupling $\alpha' = \varepsilon^2 \alpha$ Strength small, but how small?

[Slatyer, Schuster&Toro,...]

Dark Sector Overview contd.

- In this framework, wimp-like TeV-scale dark matter particles can annihilate into dark photons, which subsequently decay to SM fermions.
- If the dark photon is light → can only decay to light states. Could explain the recent observations in cosmic rays (electron excess but no antiprotons) and by ground experiments.
- Other explanations of these anomalies have been proposed, but the possibility of a hidden MeV/GeV-scale sector is poorly constrained and really worth exploring.

Particle Physics Implications

- Can produce dark photons. In fact, photons 10^{-2} in any process can be replaced by a dark photon (with an extra factor of ε).
- Decays back to lepton/quark pairs → search for resonances
- Dark photon decay can be prompt or displaced (long-lived)
- Current bounds on the mixing parameter ε $_{10^{-5}}$ are shown as a function of the dark photon mass.
- Constraints from electron/muon g-2, beam dump and fixed target experiments and e⁺e⁻ colliders (some constraints reinterpreted from limits of other measurements by theorists, e.g. BABAR)

[Essig *et al* 2013]

8

Dark Photon Production

A dark photon can be produced in

$$e^+e^- \rightarrow \gamma A', A' \rightarrow e^+e^-, \mu^+\mu^-$$

So far, only one measurement of this final state at BABAR from light CP-odd Higgs search in $\Upsilon(2S,3S)$ decays

$$e^+e^- \rightarrow \gamma A^0, A^0 \rightarrow \mu^+\mu^-$$

Select events with one photon and two oppositely charged leptons*. Look at spectrum of dilepton mass. Use reduced mass for muons.

$$m_R = \sqrt{m_{\mu\mu}^2 - 4m_\mu^2}$$

*with further cuts to reduce radiative Bhabhas

LOUISVILLE.EDU

Signal in muon/hadron detector

Photon

Analysis Technique

Scan the dielectron and dimuon reduced mass spectra and fit a background plus signal function at each step. Background includes resonances - ρ^0 , ϕ J/ψ , $\psi(2S)$

Mass resolution varies between 1.5 and 8 MeV Window size 20x mass resolution Step size approximately half the mass resolution

Electrons: 5704 fits, 0.02 – 10.2 GeV Muons: 5370 fits, 0.212 – 10.2 GeV

Assign a statistical significance for each fit:

$$S_S = \sqrt{2\log(L/L_0)}$$

L: likelihood w/background + signal

 L_0 : likelihood w/background only

10

Dark Photon Results

Here, look in 200 MeV region as suggested by excess in HyperCP results

No excess observed

PRL 94, 021801 (2005)

Cross-section Results

90% Confidence Level Upper Limit

Including Trial factors,

Most significant excursion from null hypothesis for electrons: $0.6\,\sigma$ Most significant excursion from null hypothesis for muons: $0.1\,\sigma$

Dark Sector Mixing Results

PRL submitted to to be Preliminary –

• Further exclude the region favored by the g-2 measurement and improve the existing constraints over a wide range of masses.

Dark Higgs Boson

- Dark photon mass is generated via the Higgs mechanism, adding a dark Higgs boson (h')
- A minimal scenario has a single dark photon and a single dark Higgs boson.

- Theoretical prejudice for dark Higgs mass at the MeV-GeV scale.
- The Higgsstrahlung process

$$e^+e^- \rightarrow A'^* \rightarrow h'A'$$

Search for prompt h' decays at BABAR: $e^+e^- \rightarrow A'^* \rightarrow h'A'; h' \rightarrow A'A'; A' \rightarrow l^+l^-, \pi^+\pi^-$

is only suppressed by ε^2 and should have low background

• Also sensitive to the dark sector coupling constant $\alpha_D = g_D^2 / 4\pi$

PRL 108 (2012) 21180

Dark Higgs Search

 Six candidates are selected from the full BABAR dataset (~500 fb⁻¹) PRL 108 (2012) 21180

 Three entries for each event, corresponding to the three possible assignments of the h' → A'A' decay Signal candidates

- Estimate background from
 - wrong-sign combinations, e.g. $e^+e^- \rightarrow (e^+e^+)(e^-e^-)(\mu^+\mu^-)$
 - sidebands from final sample

No events with 6 leptons, consistent with the pure background hypothesis

Dark Higgs Results

90% CL upper limit on $\alpha_D \varepsilon^2$

PRL 108 (2012) 21180

Limit on $\varepsilon^2 = \frac{\alpha'}{\alpha}$ assuming $\alpha_D = \alpha_{EM}$ for various Higgs masses

90% CL upper limit on $\alpha_n \varepsilon^2$

Substantial improvement over existing limits for $m_{h'}$ < 5 - 7 GeV if light dark Higgs boson exists

Inclusive anti-deuteron Production

Excess of anti-nuclei in cosmic rays can indirectly probe dark matter annihilation

JHEP 1011, 017 (2010); PRD 86, 103536(2012); arXiv:1308.4848

- Colored partons hadronize into nuclei
 - Process requires 6 quarks in close proximity
- Before deciphering anti-deuteron results from dark sector sources, need better understanding of 'standard' sources

 e^+e^- annihilation offers a clean environment and ability to separate quark and gluon fragmentation

Anti-deuteron identification

Analyze full BABAR dataset. Restrict attention to anti-deuterons to avoid machine backgrounds.

Anti-deuterons are heavy, highly ionizing, emit ~no Čerenkov photons

Fit dE/dx Residual in bins of center of mass momentum

Anti-deuteron Results

Process

- First measurement on $\Upsilon(3S)$
- Measurements on $\Upsilon(1S)$, $\Upsilon(2S)$ consistent with previous, but greatly improved uncertainty
- Anti-deuterons suppressed by an order of magnitude in $e^+e^- \rightarrow q\overline{q}$

110005	
$\overline{\mathcal{B}(\Upsilon(3S) \to \bar{d}X)}$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01}) \text{fb}$
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \bar{d}X)}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

arXiv:1403.4409, accepted for PRD-RC

 $\sigma(e^+e^- \to \text{Hadrons})$

- Dark matter is well-established but mysteries remain
- BABAR has completed searches for the dark photon and dark Higgs
 - No evidence for either, but
 - Tighten constraints on dark sector models
- BABAR has measured anti-deuteron production in e⁺e⁻ annihilation, improving understanding of standard backgrounds to potential dark sector signals
 Come to the dark side...
- The dark sector is an exciting field, to which electron collider experiments can make significant contributions

Thanks!

© Roy Delgado, cartoonstock.com